Package: HTLR 0.4-4

Longhai Li

HTLR: Bayesian Logistic Regression with Heavy-Tailed Priors

Efficient Bayesian multinomial logistic regression based on heavy-tailed (hyper-LASSO, non-convex) priors. The posterior of coefficients and hyper-parameters is sampled with restricted Gibbs sampling for leveraging the high-dimensionality and Hamiltonian Monte Carlo for handling the high-correlation among coefficients. A detailed description of the method: Li and Yao (2018), Journal of Statistical Computation and Simulation, 88:14, 2827-2851, <arxiv:1405.3319>.

Authors:Longhai Li [aut, cre], Steven Liu [aut]

HTLR_0.4-4.tar.gz
HTLR_0.4-4.zip(r-4.5)HTLR_0.4-4.zip(r-4.4)HTLR_0.4-4.zip(r-4.3)
HTLR_0.4-4.tgz(r-4.5-x86_64)HTLR_0.4-4.tgz(r-4.5-arm64)HTLR_0.4-4.tgz(r-4.4-x86_64)HTLR_0.4-4.tgz(r-4.4-arm64)HTLR_0.4-4.tgz(r-4.3-x86_64)HTLR_0.4-4.tgz(r-4.3-arm64)
HTLR_0.4-4.tar.gz(r-4.5-noble)HTLR_0.4-4.tar.gz(r-4.4-noble)
HTLR_0.4-4.tgz(r-4.4-emscripten)HTLR_0.4-4.tgz(r-4.3-emscripten)
HTLR.pdf |HTLR.html
HTLR/json (API)
NEWS

# Install 'HTLR' in R:
install.packages('HTLR', repos = c('https://longhaisk.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/longhaisk/htlr/issues

Pkgdown site:https://longhaisk.github.io

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

Conda-Forge:

bayesianclassificationhigh-dimensional-datamachine-learningmcmcopenblascppopenmp

5.18 score 10 stars 7 scripts 297 downloads 16 exports 14 dependencies

Last updated 4 months agofrom:af90142e1f. Checks:1 OK, 10 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 12 2025
R-4.5-win-x86_64NOTEFeb 12 2025
R-4.5-mac-x86_64NOTEFeb 12 2025
R-4.5-mac-aarch64NOTEFeb 12 2025
R-4.5-linux-x86_64NOTEFeb 12 2025
R-4.4-win-x86_64NOTEFeb 12 2025
R-4.4-mac-x86_64NOTEFeb 12 2025
R-4.4-mac-aarch64NOTEFeb 12 2025
R-4.3-win-x86_64NOTEFeb 12 2025
R-4.3-mac-x86_64NOTEFeb 12 2025
R-4.3-mac-aarch64NOTEFeb 12 2025

Exports:%>%bcbcsf_deltasevaluate_predgendata_FAMgendata_MLRhtlrhtlr_fithtlr_predicthtlr_priorlasso_deltasnzero_idxorder_ftestorder_kruskalorder_plainsplit_datastd

Dependencies:abindBCBCSFcodetoolsforeachglmnetiteratorslatticemagrittrMatrixRcppRcppArmadilloRcppEigenshapesurvival

Multinomial Logistic Regression with Heavy-Tailed Priors

Rendered fromsimu.Rmdusingknitr::rmarkdownon Feb 12 2025.

Last update: 2024-11-14
Started: 2019-09-09