HTLR - Bayesian Logistic Regression with Heavy-Tailed Priors
Efficient Bayesian multinomial logistic regression based on heavy-tailed (hyper-LASSO, non-convex) priors. The posterior of coefficients and hyper-parameters is sampled with restricted Gibbs sampling for leveraging the high-dimensionality and Hamiltonian Monte Carlo for handling the high-correlation among coefficients. A detailed description of the method: Li and Yao (2018), Journal of Statistical Computation and Simulation, 88:14, 2827-2851, <arXiv:1405.3319>.
Last updated 4 months ago
bayesianclassificationhigh-dimensional-datamachine-learningmcmcopenblascppopenmp
5.18 score 10 stars 7 scripts 297 downloads